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Abstract

‘We propose a multipole scenario to understand the absence of magnetism in é-Pu on the basis of a microscopic model constructed from a j—j
coupling scheme. In order to determine the multipole state, we employ a concept of the optimization of multipole susceptibility. By using an
exact diagonalization technique for 4-site fcc lattice, we depict the phase diagram, including the states characterized by quadrupole and octupole
fluctuations. We discuss the region in our phase diagram with possible relevance to the actual situation for §-Pu.
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1. Introduction

Recently plutonium and its related compounds have attracted
renewed attention in the research field of strongly correlated
electron systems of condensed matter physics. It has been trig-
gered by the discovery of superconductivity in PuCoGas with
high superconducting transition temperature 7, = 18.5K [1].
This material is considered to be a heavy-fermion superconduc-
tor, since the coefficient of electronic specific heat y has been
estimated as y = 77 mJ/mol K2, which is moderately enhanced
relative to that for normal metals. In PuRhGas, superconductiv-
ity has been also found [2]. Although the value of 7. = 8.7K
is lower than that of PuCoGas, it is still high enough in com-
parison with other f-electron superconductors. Recently, high
quality single crystal PuRhGas has been synthesized [3] and the
Ga-NQR measurement has been performed to reveal that d-wave
superconductivity is realized in PuRhGas [4]. This is consistent
with the results of PuCoGas from the Ga-NMR measurement
[5] and the SR measurement of the temperature dependence
of penetration depth [6].

Another issue is the absence of magnetism in §-Pu, which
is one of solid phases of Pu. It has been widely recognized that
actinide metal crystallizes in large varieties of structures, in com-
parison with other elements in the periodic table. In particular, Pu
metal takes a remarkably anomalous position. The thermal ex-
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pansion coefficient of Pu is large compared with other actinides,
and the coefficient of §-Pu is negative. Namely, in é-Pu, the vol-
ume is decreased with increasing temperature. Furthermore, the
density is smaller than that of the liquid phase. Such peculiar
behavior has been basically understood from the competition
between itineracy and localization of 5f electrons of Pu. From
this viewpoint, for the understanding of negative thermal expan-
sion coefficient, the localization tendency of 5f electron should
be the strongest in §-Pu, which requires the magnetism of §-Pu.
However, from the recent £SR measurement at low tempera-
tures in §-Pu which is stabilized by the doping of small amount
of Ga, the limit of the magnetic moment has been found to be
less than 1073 uB [7]. This result does not support the magnetic
phase. Note also that in neutron scattering measurements, no
magnetic moment has been detected thus far [8]. The competi-
tion between electron itineracy and localization is closely related
to the emergence of magnetism, but it is difficult to understand
why magnetism does not appear when localization tendency be-
comes strong. This seems to be a basic issue in condensed matter
physics.

In order to attack such a problem, it is necessary to pro-
mote a couple of theoretical researches in parallel with differ-
ent viewpoints. One is the analysis of the energy-band structure
and Fermi surfaces by using the band-structure calculation tech-
niques, in order to obtain correct information about the electronic
properties around the Fermi energy. Another is the research from
a viewpoint of strongly correlated electron systems. Namely, on
the basis of a simplified electron model which reproduces the
energy-band structure around the Fermi energy, we attempt to
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include the effect of electron correlation. These two types of
researches are complementary to each other to make significant
progress in our understandings on novel magnetism and exotic
superconductivity of actinide compounds. However, theoretical
activities on Pu were limited in the sense that band-structure
calculations and related techniques have been the main tools for
the research of Pu and related materials. It is still important to
improve the band-structure calculations, but we should make
more effort to consider the problem also from the viewpoint of
strongly correlated electron systems.

In this paper, we report our first trial to understand the absence
of magnetism in §-Pu by analyzing a multiorbital Hubbard-like
model on an fcc lattice composed of Pu** ions on the basis of a
J—j coupling scheme. When we depict the phase diagram for the
multipole state on the plane of the Hund’s rule interaction and
the crystalline electric field (CEF) potential, the non-magnetic
quadrupole state is found to exist next to the magnetic phase.
We discuss possible relevance of the present result to the actual
situation in §-Pu.

2. Model Hamiltonian

First we briefly discuss the valence of Pu in the §-phase.
The LDA+U calculation suggested 5f° electron state [9].
The analysis of the mixed-level model also suggested 5f°
configuration [10], but four electrons are in a localized multiple
hybridizing with valence states, while one 5f electron forms a
delocalized band state [11]. On the other hand, in the calculation
of the LDA+U with spin—orbit coupling A, §-Pu phase had a non-
magnetic ground state with Pu ion in O configuration [12]. The
LDA+U in combination with the mean-field theory indicated
n = 5.44 [13], where n denotes the average f-electron number
per site. It is difficult to conclude the exact valence of Pu, but the
tendency of magnetism should be strong for n = 5 in compar-
ison with the case of n = 6. It is considered to be a challenging
problem to explain the absence of magnetism even for n = 5.
Thus, in this paper, we consider the model for Pu3t ionsin an fec
lattice.

Next let us discuss the picture to describe the Sf-electron
state. For the purpose, it is useful to refer the result on Pulngs,
which is a paramagnet with enhanced specific heat coefficient
y ~ 100mJ/mol K2. Recently, Haga et al. have grown single
crystal of Pulnz and succeeded in the observation of de Haas-
van Alphen (dHvA) signals [14]. The detected dHvA branch
corresponds to a closed electron Fermi surface in good agree-
ment with the theoretical result of the relativistic band-structure
calculation on the basis of the itinerant 5f-electron states. Then,
we take the itinerant picture for 5f electrons in this paper, but
we do not intend to exclude the localized picture, since our pur-
pose here is to provide an alternative scenario for the absence
of magnetism in §-Pu. The actual situation should be located in
the middle of itinerant and localized pictures and there exist two
routes to arrive at the actual situation from itinerant and local-
ized sides, depending on the description of the 5f-electron states.
We believe that the approach from the itinerant picture is com-
plementary to previous scenarios on the basis of the localized
picture for 5f electrons.

There are two typical approaches to consider " -electron state,
LS and j—j coupling schemes. Since the {"-electron state in the
LS coupling scheme is continuously connected to that in the j—j
coupling scheme [15,16], we can take one of them depending
on the nature of the problem. In order to consider the prob-
lem from the itinerant side, we prefer to use the j—j coupling
scheme [17]. Since individual f-electron states are first defined,
we can include many-body effects using standard quantum-field
theoretical techniques. In contrast, in the LS coupling scheme
we cannot use such standard techniques, since Wick’s theorem
does not hold. Of course, when we consider the problem from
the localized picture, the LS coupling scheme is useful.

By following the method to construct the f-electron Hamil-
tonian H on the basis of the j—j coupling scheme in Ref. [17],
we obtain H as

H= Z tzufittfiﬁw + Z B/wfiLfiv

i,a,u,v iu,v
1
+ E Z Iu,v;v/,//,/fi];,,fi]:,fiv/fiu” (1)
i, v, v

where fj, is the annihilation operator for f electron with the
z-component u of total angular momentum j = 5/2 at a site
i and 7, is the overlap integral between the 1~ and v-states
connected by a vector a. For simplicity, here we consider only
the (ffo) bond and the hopping amplitude ¢ is defined by ¢ =
3(ffo)/56. The explicit expressions of 7}, , for arbitrary direction
are shown in Ref. [17]. The bandwidth Wis givenby W = (50 +
2V 145)t ~ T41.

The second term denotes the one-electron CEF potential part.
For the fcc lattice of Put with cubic symmetry, we obtain
I'7 doublet and I'g quartet. Then, we introduce the level split-
ting A between I'7 and I'g states. By using A, we express By,
as Bisyp 452 = A/6, B13jp, 432 = —A/2, B11)2,+1/2=4/3,
Bis; 532 = Bx3/2,45,2 = \/gA/6, and zero for other u and
v. Note that for n = 5, the ground state is I's for A > 0, while
I'7 for A < 0 in the j—j coupling scheme, since we simply ac-
commodate electrons in the one-electron levels.

The last term in Eq. (1) indicates the Coulomb interaction part
and 7 is the Coulomb integral expressed by using three Racah
parameters, Eo, E1, and E; [17]. Among the Racah parameters,
E, plays a key role of the Hund’s rule interaction, which is
important to determine the electron state.

3. Multipole susceptibility

In order to clarify the magnetic properties at low tempera-
tures, we usually discuss the magnetic susceptibility, but in more
general, we should consider the susceptibility of multipole mo-
ments such as dipole, quadrupole, and octupole. The multipole
operator is given in the second-quantized form as

Xiy = > (X S, i @
JIRY

where X denotes the symbol of multipole with the symmetry of
'y and y indicates a set of indices for the irreducible represen-
tation. In this paper, we consider the multipoles up to rank 3.
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As for dipole moments with I'4, symmetry, where “u” indi-
cates ungerade, we express the matrices as

Jauy = Jx, J4uy = Jy, Jaz = Jz, 3)

where Jy, Jy, and J; denote three angular momentum operators
for j = 5/2. Quadrupole moments are classified into I3z and

[Tpell

I'sy, where “g” indicates gerade. I'3g quadrupole operators are

given by

QIZ—J:=T})
2 9

For I'sg quadrupole, we have three operators as

NEWME V3T T, V3T,
Osgg =~ Osjp=—75—, Osg=—7—,

V3§ =)

03gu = Ong = ) . )

&)

where the bar denotes the operation to take all possible permu-
tations in terms of Cartesian components.

Regarding octupole moments, there are three types as 'y,
4y, and T's,. Among them, I',, octupole is given by

N15J:JyJ;
= (6)
I'4y octupole operators are written as
. :@ﬁ—h@—hg)
4ux ) s
. QU = 2= Y
4uy = ) s
QJ3—J.J2—J.J?)
Thye = —————=, (7)
2
while I'sy octupole operators are give by
_ VI5(JxJE = T J2) V154, J2 = JyJ2)
Sux = 6 s Suy = 6 s
VI15(J.JF = J.J2)
Tsu, = S —. 3

We redefine the multipole moments so as to satisfy the or-
thonormal condition Tr(X, X,/) = §,, [18], where §,, is the
Kronecker’s delta.

In principle, the multipole susceptibility can be evaluated
in the linear response theory [19], but in order to determine
the multipole state, it is necessary to maximize the multi-
pole susceptibility. Namely, we define the multipole operator
as

My = qu)’X‘IV’ ©)
%

where ¢ is the momentum and X4, is the Fourier transform of
Xijy in Eq. (2). Then, the coefficient pg, is determined by the
eigenstate with the maximum eigenvalue of the susceptibility
matrix, given by

1 1
_ E —iq-(Ri—Ry)
ny’(q) =N €

ii

5 /I/TdrTr{e_H/TXiy(r)Xi/y/}
0

Z ; (10)

where N is the number of sites, 7" the temperature, Rj denotes the
position of site i, Xj, (1) = eHTXiy e M7 and Z is the partition
function.

Since the present model is the many-body Hamiltonian in
three-dimensional (3D) environment, in any case, it is neces-
sary to resort to an approximation to analyze it. Basically, there
are two types of approaches for the problem. One is the mean-
field-based technique, in which correlation effect is taken into
account in the mean-field level, while the size of the system can
be large enough to evaluate the physical quantities in the ther-
modynamic limit. Another is the exact-diagonalization-based
method, in which electron correlation is treated exactly, but the
system size is very limited. These two methods are complemen-
tary to each other.

In this paper, we prefer to use the exact diagonalization ap-
proach. Since the fcc lattice includes geometrical frustration,
we may arrive at a conclusion irrelevant to actual phenomena,
when we apply first the mean-field approximation to the problem
concerning magnetism without any guidance. It is meaningful
to employ an unbiased technique such as the exact diagonal-
ization to consider the problem of the absence of magnetism
in §-Pu.

Here we note that each site includes three orbitals. Since it is
necessary to keep numerous numbers of eigenstates to evaluate
the multipole susceptibility, 4-site cluster is almost the limita-
tion to run the code of the exact diagonalization method in our
computational resources. Then, we take a tetrapod as the mini-
mal cluster for the fcc lattice, as shown in Fig. 1. Although it is
very difficult to conclude the ordered state from the calculations
for such a small-sized cluster, it is possible to determine the
dominant multipole fluctuation. The phase with strong fluctua-
tions may grow into the long-range order, but this point will be
examined by mean-field-based calculations. It is one of future

N
o0 T

O
N \\\ /
BNV JeNA

Fig. 1. A view of the fcc lattice with a lattice constant a. We consider that Pu*
is placed at each site. Shaded spheres compose a tetrapod.
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4. Result

After repeating numerical calculations of the multipole sus-
ceptibility, we depict the phase diagram for the 4-site fcc system
in the plane of level splitting A and one of Racah parameters
E», as shown in Fig. 2. Other parameters are set as T = 1078,
t=1073, Ey = 5, and E; = 2 in the unit of eV. We fixn = 5
throughout the calculation. Each phase is determined by the mul-
tipole state which maximizes the multipole susceptibility.

First let us see the region of A > 0 with I'g quartet ground
state for n = 5. Since I'g quartet brings several types of mul-
tipoles, it may be easy to imagine the appearance of the phase
with dominant multipole fluctuations. For E, < 0.145, we find
the phase characterized by antiferro octupole (AFO) fluctuation,
in which the optimized multipole is found to be

Mq = TqZua (11)

for ¢ = (1,0,0), (0, 1, 0), and (0, 0, 1) in the unit of 2x/a.
When we increase E3, the phase turns to be dominated by anti-
ferro quadrupole (AFQ) fluctuations. The optimized multipole
is given by

V3 Og3
My =— (2 Og3eu — ngv’ (12)
forqg =(1,0,0),
V3 0)
M, = (2 Ogaeu — "23g”, (13)

forg = (0, 1, 0), and
Mq = 0q3gv» (14)

for ¢ = (0, 0, 1). Note that the quadrupole moment extends in
the plane perpendicular to the momentum g¢, i.e., Jf - JZ2 for
q=(1,0,0), J2 = J7 for ¢ =(0,1,0), and J; — J; for g =
0,0, 1).

For A ~ 0, we find a narrow phase characterized by antiferro
magnetic (AFM) fluctuations. It seems natural that the magnetic

0.5 T T
04 E
Ferro Quadrupole Antiferro Quadrupole
— (FQ) (AFQ)
>
2L o3 E
S}
0 L
= tranS\rerse longitudinal
=l 02 L Antiferro Antiferro Magnetic 4
i ' Magnetic (-AFM)
| (-AFM)
01 4
Antiferro Octupole
I-AFM WAREY
0.0 . . L .
-0.02 -0.01 0.00 0.01 0.02

A (units of eV)

Fig. 2. Phase diagram for the 4-site fcc lattice. Meaning of each phase is ex-
plained in the maintext.

phase appears in the orbital degenerate region, when we increase
the Hund’s rule interaction which stabilizes the local magnetic
moment. The optimized magnetic moments are found to be lon-
gitudinal, given by

My = aJgaux + BTy4ux, (15)
forq = (1,0, 0),

My = agauy + BTgsuy. (16)
for g = (0, 1, 0), and

My = adganz + BTgauz, (17

for ¢ = (0, 0, 1). Thus, we call this phase “l1-AFM”. Note that
the coefficients « and 8 depend on parameters, but they change
in the ranges of « = 0.8-0.97 and B = 0.6-0.25. We find that «
increases with increasing E», while it decreases with increasing
A.

Now we turn out attention to the region of A < 0, where the
ground state for n = 5 is I'; doublet which brings only magnetic
moment. Thus, we naively expect the appearance of the magnetic
phase, but as observed in Fig. 2, there exists a wide region of the
phase characterized by ferro quadrupole (FQ) fluctuations from
excited I'g near the degenerate region for negative values of A.
The optimized multipoles are doubly degenerate, given by

Mq = 0q3gu» 0q3gva (18)

for ¢ = (0, 0, 0). Here we note that O3, quadrupoles indicate
orbital degrees of freedom in the I'g state. In general, orbitals
tend to arrange themselves so as to gain the kinetic energy [20],
but in 3D environment, ferro orbital order does not easily occur,
since the optimal shape of the orbital cannot be determined only
from the viewpoint of kinetic energy. Then, orbital (quadrupole)
fluctuations significantly remain.

For large negative A, we expectedly find the region with AFM
fluctuations. Except for a narrow region near E, = 0, the mag-
netic moments of the phase become transverse, given by

My = o' Jgany + B Tyany, & Jgauz + B Tyauz, 19)
forq = (1,0, 0),

Mg = o' Jgauz + B Tyauz, & Jgaux + B Tgaux, (20)
for g = (0, 1, 0), and

Mg = o' Jgaux + B Tgaux, & Jgauy + B Tgsuy, 2D
for ¢ = (0, 0, 1). Thus, this phase is called “t-AFM”. It is found
that ' = 0.37 and B’ = —0.93 and these values are almost un-

changed in the present parameter space. For E; ~ 0, the mag-
netic moment becomes longitudinal, given by the same expres-
sions as Egs. (15)—(17), but the coefficients « and j are replaced
by o and B'.

Let us try to set the realistic parameters for §-Pu. Concerning
E,, it can be estimated as Ey ~ Jy/49 [17], where Jy is the
original Hund’s rule interaction among f electrons. Since Jy is
considered to be in the order of eV, E» is expected to be 0.05—
0.1eV. As for A, we cannot find the value from the literatures,
but we deduce its sign as follows: In the case of Celny with
the fcc structure, it has been experimentally found that the CEF
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ground state of Ce>* is I'; and the excited state is I'g with the
excitation energy of 12meV [21]. In the case of §-Pu with the
same fcc structure, since one Pu>t is surrounded by others, the
CEF potential has the reversed sign in comparison with the case
of Celns. Thus, A is negative and the I'g level is lower. Note
again that the CEF ground state for n =5 is I'; doublet for
A < 0.

In this paper, we have set r = 1073 eV, leading to W =
0.074 eV, which seems to be much smaller than W = 1-2¢eV
from the band-structure calculations [9,13]. However, if we re-
gard H as an effective model for heavy quasi-particles with resid-
ual interactions, W = 0.074 eV is not extremely small, since we
find the moderately enhanced value of y as 60 mJ/mol K2 for
8-Pu [8]. Thus, ¢ may be larger than 1073 eV, but it should be
less than 0.01eV in the present model. When ¢ is increased,
it is found that the overall structure of the present phase di-
agram is not qualitatively changed, but the boundary curve
between FQ and t-AFM phases is shifted to the large neg-
ative value of A. We do not know the absolute value of A
for §-Pu, but it may be larger than 12 meV, since in general,
the CEF potential for 5f electrons is larger than that for 4f.
Then, the parameters for §-Pu can be situated near the bound-
ary between FQ and t-AFM phases. If we consider that 5-Pu
is in the FQ phase, it seems to be consistent with the absence
of magnetism, in the sense that magnetic fluctuations are not
dominant.

5. Discussion and summary

We have discussed the multipole state of §-Pu by evaluat-
ing the multipole susceptibility on the basis of numerical results
for the 4-site fcc cluster. The present result has suggested that
quadrupole fluctuations are significant in the ground state of §-
Pu. Here the key parameter is the CEF potential A. It may be
interesting, if possible, to perform experiments to detect induced
magnetic moment by applying pressure, assuming that the vari-
ation of the CEF potential is sensitive to the pressure. This seems
to provide an alternative story to explain that the magnetic ten-
dency becomes strong for the shrinkage of the volume. When we
consider only the competition between the Coulomb interaction
and the f-electron itineracy, it is concluded that the magnetic
phase should be stabilized by the localization tendency. How-
ever, there exists another important ingredient, orbital degree of
freedom, leading to multipole due to the combination with spin
degree of freedom through strong spin—orbit interaction. In such
a multiorbital system with active multipole degrees of freedom,
the CEF potential plays a crucial role to determine the orbital
state.

We have not mentioned superconductivity, but it is also pos-
sible to discuss the occurrence of superconductivity on the basis
of the same model. For instance, for Ce-based heavy-fermion
superconductors CeMIns (M =Co, Rh, and Ir), d-wave super-
conductivity induced by AFM fluctuations has been suggested
to occur based on the similar model [22,23], consistent with
experimental results. In particular, the importance of the orbital
state under a tetragonal CEF potential has been pointed out [23].
Concerning PuMGas (M = Co and Rh), there is a simple idea us-

ing the electron-hole symmetry [17]. In the j—j coupling scheme,
the f-electron state of n = 5 is considered to be the hole version
of that of n = 1. Thus, it is expected that the d-wave supercon-
ductivity induced by AFM fluctuations also occurs in PuMGas.
However, it may be premature to conclude it, since the relevant
orbital state should be quite different from that of CeMlIns. It
is one of future tasks to perform actual calculations for n = 5
using the model with the tetragonal CEF.

In summary, we have proposed the idea that the ground state
of §-Pu is dominated by quadrupole fluctuations. When the CEF
potential is controlled, for instance, by pressure, such a phase
is changed to be magnetic, suggesting the induced magnetic
moment. We believe that the multipole scenario provides us a
hint to resolve a puzzle concerning the absence of magnetism in
6-Pu.
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