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bstract

We propose a multipole scenario to understand the absence of magnetism in δ-Pu on the basis of a microscopic model constructed from a j–j
oupling scheme. In order to determine the multipole state, we employ a concept of the optimization of multipole susceptibility. By using an
xact diagonalization technique for 4-site fcc lattice, we depict the phase diagram, including the states characterized by quadrupole and octupole

uctuations. We discuss the region in our phase diagram with possible relevance to the actual situation for δ-Pu.
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. Introduction

Recently plutonium and its related compounds have attracted
enewed attention in the research field of strongly correlated
lectron systems of condensed matter physics. It has been trig-
ered by the discovery of superconductivity in PuCoGa5 with
igh superconducting transition temperature Tc = 18.5 K [1].
his material is considered to be a heavy-fermion superconduc-

or, since the coefficient of electronic specific heat γ has been
stimated as γ = 77 mJ/mol K2, which is moderately enhanced
elative to that for normal metals. In PuRhGa5, superconductiv-
ty has been also found [2]. Although the value of Tc = 8.7 K
s lower than that of PuCoGa5, it is still high enough in com-
arison with other f-electron superconductors. Recently, high
uality single crystal PuRhGa5 has been synthesized [3] and the
a-NQR measurement has been performed to reveal that d-wave

uperconductivity is realized in PuRhGa5 [4]. This is consistent
ith the results of PuCoGa5 from the Ga-NMR measurement

5] and the μSR measurement of the temperature dependence
f penetration depth [6].

Another issue is the absence of magnetism in δ-Pu, which
s one of solid phases of Pu. It has been widely recognized that

ctinide metal crystallizes in large varieties of structures, in com-
arison with other elements in the periodic table. In particular, Pu
etal takes a remarkably anomalous position. The thermal ex-
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ansion coefficient of Pu is large compared with other actinides,
nd the coefficient of δ-Pu is negative. Namely, in δ-Pu, the vol-
me is decreased with increasing temperature. Furthermore, the
ensity is smaller than that of the liquid phase. Such peculiar
ehavior has been basically understood from the competition
etween itineracy and localization of 5f electrons of Pu. From
his viewpoint, for the understanding of negative thermal expan-
ion coefficient, the localization tendency of 5f electron should
e the strongest in δ-Pu, which requires the magnetism of δ-Pu.
owever, from the recent μSR measurement at low tempera-

ures in δ-Pu which is stabilized by the doping of small amount
f Ga, the limit of the magnetic moment has been found to be
ess than 10−3μB [7]. This result does not support the magnetic
hase. Note also that in neutron scattering measurements, no
agnetic moment has been detected thus far [8]. The competi-

ion between electron itineracy and localization is closely related
o the emergence of magnetism, but it is difficult to understand
hy magnetism does not appear when localization tendency be-

omes strong. This seems to be a basic issue in condensed matter
hysics.

In order to attack such a problem, it is necessary to pro-
ote a couple of theoretical researches in parallel with differ-

nt viewpoints. One is the analysis of the energy-band structure
nd Fermi surfaces by using the band-structure calculation tech-
iques, in order to obtain correct information about the electronic

roperties around the Fermi energy. Another is the research from
viewpoint of strongly correlated electron systems. Namely, on

he basis of a simplified electron model which reproduces the
nergy-band structure around the Fermi energy, we attempt to

mailto:hotta.takashi@jaea.go.jp
dx.doi.org/10.1016/j.jallcom.2006.11.028
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nclude the effect of electron correlation. These two types of
esearches are complementary to each other to make significant
rogress in our understandings on novel magnetism and exotic
uperconductivity of actinide compounds. However, theoretical
ctivities on Pu were limited in the sense that band-structure
alculations and related techniques have been the main tools for
he research of Pu and related materials. It is still important to
mprove the band-structure calculations, but we should make

ore effort to consider the problem also from the viewpoint of
trongly correlated electron systems.

In this paper, we report our first trial to understand the absence
f magnetism in δ-Pu by analyzing a multiorbital Hubbard-like
odel on an fcc lattice composed of Pu3+ ions on the basis of a

–j coupling scheme. When we depict the phase diagram for the
ultipole state on the plane of the Hund’s rule interaction and

he crystalline electric field (CEF) potential, the non-magnetic
uadrupole state is found to exist next to the magnetic phase.
e discuss possible relevance of the present result to the actual

ituation in δ-Pu.

. Model Hamiltonian

First we briefly discuss the valence of Pu in the δ-phase.
he LDA+U calculation suggested 5f5 electron state [9].
he analysis of the mixed-level model also suggested 5f5

onfiguration [10], but four electrons are in a localized multiple
ybridizing with valence states, while one 5f electron forms a
elocalized band state [11]. On the other hand, in the calculation
f the LDA+U with spin–orbit coupling λ, δ-Pu phase had a non-
agnetic ground state with Pu ion in f6 configuration [12]. The
DA+U in combination with the mean-field theory indicated
= 5.44 [13], where n denotes the average f-electron number

er site. It is difficult to conclude the exact valence of Pu, but the
endency of magnetism should be strong for n = 5 in compar-
son with the case of n = 6. It is considered to be a challenging
roblem to explain the absence of magnetism even for n = 5.
hus, in this paper, we consider the model for Pu3+ ions in an fcc

attice.
Next let us discuss the picture to describe the 5f-electron

tate. For the purpose, it is useful to refer the result on PuIn3,
hich is a paramagnet with enhanced specific heat coefficient
∼ 100 mJ/mol K2. Recently, Haga et al. have grown single

rystal of PuIn3 and succeeded in the observation of de Haas-
an Alphen (dHvA) signals [14]. The detected dHvA branch
orresponds to a closed electron Fermi surface in good agree-
ent with the theoretical result of the relativistic band-structure

alculation on the basis of the itinerant 5f-electron states. Then,
e take the itinerant picture for 5f electrons in this paper, but
e do not intend to exclude the localized picture, since our pur-
ose here is to provide an alternative scenario for the absence
f magnetism in δ-Pu. The actual situation should be located in
he middle of itinerant and localized pictures and there exist two
outes to arrive at the actual situation from itinerant and local-

zed sides, depending on the description of the 5f-electron states.

e believe that the approach from the itinerant picture is com-
lementary to previous scenarios on the basis of the localized
icture for 5f electrons.

w
�

t
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There are two typical approaches to consider fn-electron state,
S and j–j coupling schemes. Since the fn-electron state in the
S coupling scheme is continuously connected to that in the j–j
oupling scheme [15,16], we can take one of them depending
n the nature of the problem. In order to consider the prob-
em from the itinerant side, we prefer to use the j–j coupling
cheme [17]. Since individual f-electron states are first defined,
e can include many-body effects using standard quantum-field

heoretical techniques. In contrast, in the LS coupling scheme
e cannot use such standard techniques, since Wick’s theorem
oes not hold. Of course, when we consider the problem from
he localized picture, the LS coupling scheme is useful.

By following the method to construct the f-electron Hamil-
onian H on the basis of the j–j coupling scheme in Ref. [17],
e obtain H as

=
∑

i,a,μ,ν

ta
μνf

†
iμfi+aν +

∑
i,μ,ν

Bμνf
†
iμfiν

+ 1

2

∑
i,μ,ν,μ′,ν′

Iμ,ν;ν′,μ′f †
iμf

†
iνfiν′fiμ′ , (1)

here fiμ is the annihilation operator for f electron with the
-component μ of total angular momentum j = 5/2 at a site
and ta

μν is the overlap integral between the μ- and ν-states
onnected by a vector a. For simplicity, here we consider only
he (ffσ) bond and the hopping amplitude t is defined by t =
(ffσ)/56. The explicit expressions of ta

μν for arbitrary direction
re shown in Ref. [17]. The bandwidth W is given by W = (50 +√

145)t ≈ 74t.
The second term denotes the one-electron CEF potential part.

or the fcc lattice of Pu3+ with cubic symmetry, we obtain
7 doublet and �8 quartet. Then, we introduce the level split-

ing Δ between �7 and �8 states. By using Δ, we express Bμν

s B±5/2,±5/2 = Δ/6, B±3/2,±3/2 = −Δ/2, B±1/2,±1/2=Δ/3,

±5/2,∓3/2 = B∓3/2,±5/2 = √
5Δ/6, and zero for other μ and

. Note that for n = 5, the ground state is �8 for Δ > 0, while
7 for Δ < 0 in the j–j coupling scheme, since we simply ac-
ommodate electrons in the one-electron levels.

The last term in Eq. (1) indicates the Coulomb interaction part
nd I is the Coulomb integral expressed by using three Racah
arameters, E0, E1, and E2 [17]. Among the Racah parameters,
2 plays a key role of the Hund’s rule interaction, which is

mportant to determine the electron state.

. Multipole susceptibility

In order to clarify the magnetic properties at low tempera-
ures, we usually discuss the magnetic susceptibility, but in more
eneral, we should consider the susceptibility of multipole mo-
ents such as dipole, quadrupole, and octupole. The multipole

perator is given in the second-quantized form as

iγ =
∑

(Xγ )μνf
†
iμfiν, (2)
μ,ν

here X denotes the symbol of multipole with the symmetry of
γ and γ indicates a set of indices for the irreducible represen-

ation. In this paper, we consider the multipoles up to rank 3.
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examined by mean-field-based calculations. It is one of future
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As for dipole moments with �4u symmetry, where “u” indi-
ates ungerade, we express the matrices as

4ux = Jx, J4uy = Jy, J4uz = Jz, (3)

here Jx, Jy, and Jz denote three angular momentum operators
or j = 5/2. Quadrupole moments are classified into �3g and
5g, where “g” indicates gerade. �3g quadrupole operators are
iven by

3gu = (2J2
z − J2

x − J2
y )

2
, O3gv =

√
3(J2

x − J2
y )

2
. (4)

For �5g quadrupole, we have three operators as

5gξ =
√

3JyJz

2
, O5gη =

√
3JzJx

2
, O5gζ =

√
3JxJy

2
,

(5)

here the bar denotes the operation to take all possible permu-
ations in terms of Cartesian components.

Regarding octupole moments, there are three types as �2u,
4u, and �5u. Among them, �2u octupole is given by

2u =
√

15JxJyJz

6
. (6)

�4u octupole operators are written as

4ux = (2J3
x − JxJ2

y − JxJ2
z )

2
,

4uy = (2J3
y − JyJ2

z − JyJ2
x )

2
,

4uz = (2J3
z − JzJ2

x − JzJ2
y )

2
, (7)

hile �5u octupole operators are give by

5ux =
√

15(JxJ2
y − JxJ2

z )

6
, T5uy =

√
15(JyJ2

z − JyJ2
x )

6
,

5uz =
√

15(JzJ2
x − JzJ2

y )

6
. (8)

We redefine the multipole moments so as to satisfy the or-
honormal condition Tr(XγXγ ′ ) = δγγ ′ [18], where δγγ ′ is the
ronecker’s delta.
In principle, the multipole susceptibility can be evaluated

n the linear response theory [19], but in order to determine
he multipole state, it is necessary to maximize the multi-
ole susceptibility. Namely, we define the multipole operator
s

q =
∑
γ

pqγXqγ , (9)

here q is the momentum and Xqγ is the Fourier transform of
iγ in Eq. (2). Then, the coefficient pqγ is determined by the

igenstate with the maximum eigenvalue of the susceptibility
atrix, given by

F
i

ounds 444–445 (2007) 162–167

γγ ′ (q) = 1

N

∑
i,i′

e−iq·(Ri−Ri′ )

×
∫ 1/T

0
dτ

Tr{e−H/T Xiγ (τ)Xi′γ ′ }
Z

, (10)

here N is the number of sites, T the temperature, Ri denotes the
osition of site i, Xiγ (τ) = eHτXiγ e−Hτ , and Z is the partition
unction.

Since the present model is the many-body Hamiltonian in
hree-dimensional (3D) environment, in any case, it is neces-
ary to resort to an approximation to analyze it. Basically, there
re two types of approaches for the problem. One is the mean-
eld-based technique, in which correlation effect is taken into
ccount in the mean-field level, while the size of the system can
e large enough to evaluate the physical quantities in the ther-
odynamic limit. Another is the exact-diagonalization-based
ethod, in which electron correlation is treated exactly, but the

ystem size is very limited. These two methods are complemen-
ary to each other.

In this paper, we prefer to use the exact diagonalization ap-
roach. Since the fcc lattice includes geometrical frustration,
e may arrive at a conclusion irrelevant to actual phenomena,
hen we apply first the mean-field approximation to the problem

oncerning magnetism without any guidance. It is meaningful
o employ an unbiased technique such as the exact diagonal-
zation to consider the problem of the absence of magnetism
n δ-Pu.

Here we note that each site includes three orbitals. Since it is
ecessary to keep numerous numbers of eigenstates to evaluate
he multipole susceptibility, 4-site cluster is almost the limita-
ion to run the code of the exact diagonalization method in our
omputational resources. Then, we take a tetrapod as the mini-
al cluster for the fcc lattice, as shown in Fig. 1. Although it is

ery difficult to conclude the ordered state from the calculations
or such a small-sized cluster, it is possible to determine the
ominant multipole fluctuation. The phase with strong fluctua-
ig. 1. A view of the fcc lattice with a lattice constant a. We consider that Pu3+
s placed at each site. Shaded spheres compose a tetrapod.
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. Result

After repeating numerical calculations of the multipole sus-
eptibility, we depict the phase diagram for the 4-site fcc system
n the plane of level splitting Δ and one of Racah parameters

2, as shown in Fig. 2. Other parameters are set as T = 10−8,
= 10−3, E0 = 5, and E1 = 2 in the unit of eV. We fix n = 5

hroughout the calculation. Each phase is determined by the mul-
ipole state which maximizes the multipole susceptibility.

First let us see the region of Δ > 0 with �8 quartet ground
tate for n = 5. Since �8 quartet brings several types of mul-
ipoles, it may be easy to imagine the appearance of the phase
ith dominant multipole fluctuations. For E2 < 0.145, we find

he phase characterized by antiferro octupole (AFO) fluctuation,
n which the optimized multipole is found to be

q = Tq2u, (11)

or q = (1, 0, 0), (0, 1, 0), and (0, 0, 1) in the unit of 2π/a.
hen we increase E2, the phase turns to be dominated by anti-

erro quadrupole (AFQ) fluctuations. The optimized multipole
s given by

q = −
(√

3

2

)
Oq3gu − Oq3gv

2
, (12)

or q = (1, 0, 0),

q =
(√

3

2

)
Oq3gu − Oq3gv

2
, (13)

or q = (0, 1, 0), and

q = Oq3gv, (14)

or q = (0, 0, 1). Note that the quadrupole moment extends in
he plane perpendicular to the momentum q, i.e., J2

y − J2
z for
= (1, 0, 0), J2
z − J2

x for q = (0, 1, 0), and J2
x − J2

y for q =
0, 0, 1).

For Δ ≈ 0, we find a narrow phase characterized by antiferro
agnetic (AFM) fluctuations. It seems natural that the magnetic

ig. 2. Phase diagram for the 4-site fcc lattice. Meaning of each phase is ex-
lained in the maintext.
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hase appears in the orbital degenerate region, when we increase
he Hund’s rule interaction which stabilizes the local magnetic

oment. The optimized magnetic moments are found to be lon-
itudinal, given by

q = αJq4ux + βTq4ux, (15)

or q = (1, 0, 0),

q = αJq4uy + βTq4uy, (16)

or q = (0, 1, 0), and

q = αJq4uz + βTq4uz, (17)

or q = (0, 0, 1). Thus, we call this phase “l-AFM”. Note that
he coefficients α and β depend on parameters, but they change
n the ranges of α = 0.8–0.97 and β = 0.6–0.25. We find that α

ncreases with increasing E2, while it decreases with increasing
.
Now we turn out attention to the region of Δ < 0, where the

round state for n = 5 is �7 doublet which brings only magnetic
oment. Thus, we naively expect the appearance of the magnetic

hase, but as observed in Fig. 2, there exists a wide region of the
hase characterized by ferro quadrupole (FQ) fluctuations from
xcited �8 near the degenerate region for negative values of Δ.
he optimized multipoles are doubly degenerate, given by

q = Oq3gu, Oq3gv, (18)

or q = (0, 0, 0). Here we note that O3g quadrupoles indicate
rbital degrees of freedom in the �8 state. In general, orbitals
end to arrange themselves so as to gain the kinetic energy [20],
ut in 3D environment, ferro orbital order does not easily occur,
ince the optimal shape of the orbital cannot be determined only
rom the viewpoint of kinetic energy. Then, orbital (quadrupole)
uctuations significantly remain.

For large negative Δ, we expectedly find the region with AFM
uctuations. Except for a narrow region near E2 = 0, the mag-
etic moments of the phase become transverse, given by

q = α′Jq4uy + β′Tq4uy, α′Jq4uz + β′Tq4uz, (19)

or q = (1, 0, 0),

q = α′Jq4uz + β′Tq4uz, α′Jq4ux + β′Tq4ux, (20)

or q = (0, 1, 0), and

q = α′Jq4ux + β′Tq4ux, α′Jq4uy + β′Tq4uy, (21)

or q = (0, 0, 1). Thus, this phase is called “t-AFM”. It is found
hat α′ = 0.37 and β′ = −0.93 and these values are almost un-
hanged in the present parameter space. For E2 ≈ 0, the mag-
etic moment becomes longitudinal, given by the same expres-
ions as Eqs. (15)–(17), but the coefficients α and β are replaced
y α′ and β′.

Let us try to set the realistic parameters for δ-Pu. Concerning
2, it can be estimated as E2 ∼ JH/49 [17], where JH is the
riginal Hund’s rule interaction among f electrons. Since JH is

onsidered to be in the order of eV, E2 is expected to be 0.05–
.1 eV. As for Δ, we cannot find the value from the literatures,
ut we deduce its sign as follows: In the case of CeIn3 with
he fcc structure, it has been experimentally found that the CEF
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round state of Ce3+ is �7 and the excited state is �8 with the
xcitation energy of 12 meV [21]. In the case of δ-Pu with the
ame fcc structure, since one Pu3+ is surrounded by others, the
EF potential has the reversed sign in comparison with the case
f CeIn3. Thus, Δ is negative and the �8 level is lower. Note
gain that the CEF ground state for n = 5 is �7 doublet for
< 0.
In this paper, we have set t = 10−3 eV, leading to W =

.074 eV, which seems to be much smaller than W = 1–2 eV
rom the band-structure calculations [9,13]. However, if we re-
ard H as an effective model for heavy quasi-particles with resid-
al interactions, W = 0.074 eV is not extremely small, since we
nd the moderately enhanced value of γ as 60 mJ/mol K2 for
-Pu [8]. Thus, t may be larger than 10−3 eV, but it should be
ess than 0.01 eV in the present model. When t is increased,
t is found that the overall structure of the present phase di-
gram is not qualitatively changed, but the boundary curve
etween FQ and t-AFM phases is shifted to the large neg-
tive value of Δ. We do not know the absolute value of Δ

or δ-Pu, but it may be larger than 12 meV, since in general,
he CEF potential for 5f electrons is larger than that for 4f.
hen, the parameters for δ-Pu can be situated near the bound-
ry between FQ and t-AFM phases. If we consider that δ-Pu
s in the FQ phase, it seems to be consistent with the absence
f magnetism, in the sense that magnetic fluctuations are not
ominant.

. Discussion and summary

We have discussed the multipole state of δ-Pu by evaluat-
ng the multipole susceptibility on the basis of numerical results
or the 4-site fcc cluster. The present result has suggested that
uadrupole fluctuations are significant in the ground state of δ-
u. Here the key parameter is the CEF potential Δ. It may be

nteresting, if possible, to perform experiments to detect induced
agnetic moment by applying pressure, assuming that the vari-

tion of the CEF potential is sensitive to the pressure. This seems
o provide an alternative story to explain that the magnetic ten-
ency becomes strong for the shrinkage of the volume. When we
onsider only the competition between the Coulomb interaction
nd the f-electron itineracy, it is concluded that the magnetic
hase should be stabilized by the localization tendency. How-
ver, there exists another important ingredient, orbital degree of
reedom, leading to multipole due to the combination with spin
egree of freedom through strong spin–orbit interaction. In such
multiorbital system with active multipole degrees of freedom,

he CEF potential plays a crucial role to determine the orbital
tate.

We have not mentioned superconductivity, but it is also pos-
ible to discuss the occurrence of superconductivity on the basis
f the same model. For instance, for Ce-based heavy-fermion
uperconductors CeMIn5 (M = Co, Rh, and Ir), d-wave super-
onductivity induced by AFM fluctuations has been suggested

o occur based on the similar model [22,23], consistent with
xperimental results. In particular, the importance of the orbital
tate under a tetragonal CEF potential has been pointed out [23].
oncerning PuMGa5 (M = Co and Rh), there is a simple idea us-
ounds 444–445 (2007) 162–167

ng the electron-hole symmetry [17]. In the j–j coupling scheme,
he f-electron state of n = 5 is considered to be the hole version
f that of n = 1. Thus, it is expected that the d-wave supercon-
uctivity induced by AFM fluctuations also occurs in PuMGa5.
owever, it may be premature to conclude it, since the relevant
rbital state should be quite different from that of CeMIn5. It
s one of future tasks to perform actual calculations for n = 5
sing the model with the tetragonal CEF.

In summary, we have proposed the idea that the ground state
f δ-Pu is dominated by quadrupole fluctuations. When the CEF
otential is controlled, for instance, by pressure, such a phase
s changed to be magnetic, suggesting the induced magnetic

oment. We believe that the multipole scenario provides us a
int to resolve a puzzle concerning the absence of magnetism in
-Pu.
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1698.

[4] H. Sakai, Y. Tokunaga, T. Fujimoto, S. Kambe, R.E. Walstedt, H. Yasuoka,
D. Aoki, Y. Homma, E. Yamamoto, A. Nakamura, Y. Shiokawa, K. Naka-
jima, Y. Arai, T.D. Matsuda, Y. Haga, Y. Ōnuki, J. Phys. Soc. Jpn. 74 (2005)
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